Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
J Dev Orig Health Dis ; 14(5): 670-677, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38073570

RESUMO

Increasing evidence shows that maternal hyperglycemia inhibits cardiomyocyte (CM) proliferation and promotes cell apoptosis during fetal heart development, which leads to cardiac dysplasia. Accumulating evidence suggests that the overexpression of miR-21 in CMs has a protective role in cardiac function. Therefore, we investigated whether miR-21 can rescue CM injury caused by high glucose. First, we performed biological function analysis of miR-21-5p overexpression in H9c2 cells treated with high glucose. We found that the proliferation of H9c2 cells treated with high glucose decreased significantly and was rescued after overexpression of miR-21-5p. CCK-8 and EdU incorporation assays were performed to assess cell proliferation. The cell proliferation of the miR-21-5p mimic transfection group was improved compared with that of the NC mimic group (*p < 0.05, miR-21-5p mimics vs. NC mimics) when the proliferation of H9c2 cells was reduced by high glucose (****p < 0.0001, high glucose (HG) vs. normal glucose (NG)). Then, we verified the targeted and negative regulation of miR-21-5p on Rhob using a dual-luciferase activity assay and RT-qPCR, respectively. We further demonstrated that miR-21-5p regulates Rhob to rescue the inhibition of CM proliferation induced by high glucose. The CCK-8 results showed that the cell proliferation of the siRNA-Rhob group was higher than that of the NC mimic group (***p < 0.001) and that of the cotransfection group with Up-Rhob plasmids and miR-21-5p mimics was lower than that of the miR-21-5p mimic group (*p < 0.05). Conclusion: Overexpression of miR-21-5p rescues the inhibition of high glucose-induced CM proliferation through regulation of Rhob.


Assuntos
Glucose , MicroRNAs , Miócitos Cardíacos , Apoptose/genética , Proliferação de Células , Glucose/toxicidade , Glucose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Sincalida/metabolismo , Regulação para Cima , Proteína rhoB de Ligação ao GTP/metabolismo , Animais , Ratos
2.
Eur J Cell Biol ; 102(4): 151355, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37639782

RESUMO

Small GTPases are highly regulated proteins that control essential signaling pathways through the activity of their effector proteins. Among the RHOA subfamily, RHOB regulates peculiar functions that could be associated with the control of the endocytic trafficking of signaling proteins. Here, we used an optimized assay based on tripartite split-GFP complementation to localize GTPase-effector complexes with high-resolution. The detection of RHOB interaction with the Rhotekin Rho binding domain (RBD) that specifically recognizes the active GTP-bound GTPase, is performed in vitro by the concomitant addition of recombinant GFP1-9 and a GFP nanobody. Analysis of RHOB-RBD complexes localization profiles combined with immunostaining and live cell imaging indicated a serum-dependent reorganization of the endosomal and membrane pool of active RHOB. We further applied this technology to the detection of RHO-effector complexes that highlighted their subcellular localization with high resolution among the different cellular compartments.


Assuntos
Transdução de Sinais , Proteína rhoB de Ligação ao GTP , Proteína rhoB de Ligação ao GTP/genética , Proteína rhoB de Ligação ao GTP/química , Proteína rhoB de Ligação ao GTP/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Membrana Celular/metabolismo , Guanosina Trifosfato/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
3.
Eur J Cell Biol ; 102(2): 151313, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36996579

RESUMO

The small GTPase RhoB is distinguished from other Rho proteins by its unique subcellular localization in endosomes, multivesicular bodies, and nucleus. Despite high sequence homology with RhoA and RhoC, RhoB is mainly associated with tumor suppressive function, while RhoA and RhoC support oncogenic transformation in most malignancies. RhoB regulates the endocytic trafficking of signaling molecules and cytoskeleton remodeling, thereby controlling growth, apoptosis, stress response, immune function, and cell motility in various contexts. Some of these functions may be ascribed to RhoB's unique subcellular localization to endocytic compartments. Here we describe the pleiotropic roles of RhoB in cancer suppression in the context of its subcellular localization, and we discuss possible therapeutic avenues to pursue and highlight priorities for future research.


Assuntos
Neoplasias , Proteína rhoB de Ligação ao GTP , Humanos , Proteína rhoB de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Transdução de Sinais , Movimento Celular
4.
Am J Pathol ; 193(5): 579-590, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740183

RESUMO

RhoB protein belongs to the Rho GTPase family, which plays an important role in governing cell signaling and tissue morphology. Its expression is known to have implications in pathologic processes of diseases. In particular, the role of RhoB in rectal cancer is not well understood. Investigation in the regulation and communication of this protein, detected by immunohistochemical staining on the microscope, can help gain insightful information leading to optimal disease treatment options. Herein, deep learning-based image analysis and the decomposition of multiway arrays were used to study the predictive factor of RhoB in two cohorts of patients with rectal cancer having survival rates of <5 and >5 years. The results show distinctions between the tensor decomposition factors of the two cohorts.


Assuntos
Neoplasias Retais , Proteína rhoB de Ligação ao GTP , Humanos , Proteína rhoB de Ligação ao GTP/química , Proteína rhoB de Ligação ao GTP/metabolismo , Transdução de Sinais , Biópsia
5.
Traffic ; 24(4): 162-176, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36562184

RESUMO

The control of intracellular membrane trafficking by Rho GTPases is central to cellular homeostasis. How specific guanine nucleotide exchange factors and GTPase-activating proteins locally balance GTPase activation in this process is nevertheless largely unclear. By performing a microscopy-based RNAi screen, we here identify the RhoGEF protein Solo as a functional counterplayer of DLC3, a RhoGAP protein with established roles in membrane trafficking. Biochemical, imaging and optogenetics assays further uncover Solo as a novel regulator of endosomal RhoB. Remarkably, we find that Solo and DLC3 control not only the activity, but also total protein levels of RhoB in an antagonistic manner. Together, the results of our study uncover the first functionally connected RhoGAP-RhoGEF pair at endomembranes, placing Solo and DLC3 at the core of endocytic trafficking.


Assuntos
Proteínas rho de Ligação ao GTP , Proteína rhoB de Ligação ao GTP , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Complexo de Golgi/metabolismo , Endossomos/metabolismo
6.
Biochem Pharmacol ; 206: 115321, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306821

RESUMO

The Rho subfamily members of Rho GTPases, RhoA, RhoB, and RhoC, are key regulators of signal transduction in a variety of cellular processes, including regulation of actomyosin and microtubule dynamics, cell shape, cell adhesion, cell division, cell migration, vesicle/membrane trafficking, and cell proliferation. Traditionally, the focus of research on RhoA/B/C has been on tumor biology, as dysregulation of expression or function of these proteins plays an important role in the pathogenesis of various cancer entities. However, RhoA, RhoB, and RhoC are also important in the context of vascular biology and pathology because they influence endothelial barrier function, vascular smooth muscle contractility and proliferation, vascular function and remodelling as well as angiogenesis. In this context, RhoA/B/C exploit numerous effector molecules to transmit their signals, and their activity is regulated by a variety of guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs) that enable precise spatiotemporal activation often in concert with other Rho GTPases. Although their protein structure is very similar, different mechanisms of regulation of gene expression, different localization, and to some extent different interaction with RhoGAPs and RhoGEFs have been observed for RhoA/B/C. In this review, we aim to provide a current overview of the Rho subfamily as regulators of vascular biology and pathology, analyzing database information and existing literature on expression, protein structure, and interaction with effectors and regulatory proteins. In this setting, we will also discuss recent findings on Rho effectors, RhoGEFs, RhoGAPs, as well as guanine nucleotide dissociation inhibitors (RhoGDIs).


Assuntos
Proteína rhoA de Ligação ao GTP , Proteína rhoB de Ligação ao GTP , Proteína de Ligação a GTP rhoC/metabolismo , Proteína rhoB de Ligação ao GTP/genética , Proteína rhoB de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/genética , Movimento Celular , Biologia
7.
Microbiome ; 10(1): 149, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114582

RESUMO

BACKGROUND: The pathogenesis of inflammatory bowel diseases (IBD) is multifactorial, and diagnostic and treatment strategies for IBD remain to be developed. RhoB regulates multiple cell functions; however, its role in colitis is unexplored. RESULTS: Here, we found RhoB was dramatically increased in colon tissues of ulcerative colitis (UC) patients and mice with DSS-induced colitis. Compared with wild type mice, RhoB+/- and RhoB-/- mice developed milder DSS-induced colitis and increased goblet cell numbers and IEC proliferation. Decreased RhoB promoted goblet cell differentiation and epithelial regeneration through inhibiting Wnt signaling pathway and activating p38 MAPK signaling pathway. Moreover, increased SCFA-producing bacteria and SCFA concentrations were detected in intestinal microbiome of both RhoB+/- and RhoB-/- mice and upregulated SCFA receptor expression was also observed. CONCLUSIONS: Taken together, a higher level of RhoB is associated with UC, which also contributes to UC development through modulating cell signaling and altering intestinal bacterial composition and metabolites. These observations suggest that RhoB has potential as a biomarker and a treatment target for UC. Video Abstract.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Proteína rhoB de Ligação ao GTP/metabolismo , Animais , Biomarcadores , Colite/induzido quimicamente , Colite/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Sulfato de Dextrana , Humanos , Camundongos , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Endocrinology ; 163(11)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36047434

RESUMO

Endometrial decidualization refers to a series of morphological changes and functional remodeling of the uterine endometrium to accept the embryo under the effect of estrogen and progesterone secreted by ovaries after ovulation. During decidualization, endometrial stromal cells (ESCs) proliferate and differentiate into decidual stromal cells, undergoing cytoskeletal rearrangement-mediated morphological changes and expressing decidualization markers, such as insulin-like growth factor-binding protein-1 and prolactin. Ras homology (Rho) proteins, a family of small G proteins, are well known as regulators of cellular morphology and involved in multiple other cellular processes. In this study, we found ras homolog family member B (RHOB) was the most significantly upregulated gene in the Rho protein family after the in vitro decidualization of human primary ESCs. RhoB expression was induced mainly by 3',5'-cyclic adenosine 5'-monophosphate (cAMP) / protein kinase A (PKA) / cyclic adenosine monophosphate-response element binding protein signaling and partly by progesterone signaling. Knockdown of RhoB in ESCs greatly inhibited actin cytoskeletal rearrangement, cell morphological transformation, and upregulation of insulin-like growth factor-binding protein-1, suggesting an indispensable role of RhoB in decidualization. Mechanistically, the downstream target of RhoB was semaphorin3A (Sema3A), which mediated its signaling via interacting with the receptor, plexinA4. More importantly, decreased expression of RhoB, Sema3A, and plexinA4 were detected in deciduas from patients with unexplained spontaneous miscarriage. Collectively, our results indicate that RhoB/Sema3A/plexinA4 signaling plays a positive role in endometrial decidualization and relates to unexplained spontaneous miscarriage, which is worthy of further exploration so as to provide new insights into therapeutic strategies for pregnancy diseases associated with poor decidualization.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Receptores de Superfície Celular , Semaforina-3A , Células Estromais , Proteína rhoB de Ligação ao GTP , Aborto Espontâneo/metabolismo , Actinas/metabolismo , Monofosfato de Adenosina/metabolismo , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Decídua/metabolismo , Endométrio/metabolismo , Estrogênios/farmacologia , Feminino , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Gravidez , Progesterona/metabolismo , Prolactina/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforina-3A/metabolismo , Células Estromais/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo
9.
Blood Adv ; 6(17): 5184-5197, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35819450

RESUMO

Megakaryocytes are large cells in the bone marrow that give rise to blood platelets. Platelet biogenesis involves megakaryocyte maturation, the localization of the mature cells in close proximity to bone marrow sinusoids, and the formation of protrusions, which are elongated and shed within the circulation. Rho GTPases play important roles in platelet biogenesis and function. RhoA-deficient mice display macrothrombocytopenia and a striking mislocalization of megakaryocytes into bone marrow sinusoids and a specific defect in G-protein signaling in platelets. However, the role of the closely related protein RhoB in megakaryocytes or platelets remains unknown. In this study, we show that, in contrast to RhoA deficiency, genetic ablation of RhoB in mice results in microthrombocytopenia (decreased platelet count and size). RhoB-deficient platelets displayed mild functional defects predominantly upon induction of the collagen/glycoprotein VI pathway. Megakaryocyte maturation and localization within the bone marrow, as well as actin dynamics, were not affected in the absence of RhoB. However, in vitro-generated proplatelets revealed pronouncedly impaired microtubule organization. Furthermore, RhoB-deficient platelets and megakaryocytes displayed selective defects in microtubule dynamics/stability, correlating with reduced levels of acetylated α-tubulin. Our findings imply that the reduction of this tubulin posttranslational modification results in impaired microtubule dynamics, which might contribute to microthrombocytopenia in RhoB-deficient mice. Importantly, we demonstrate that RhoA and RhoB are localized differently and have selective, nonredundant functions in the megakaryocyte lineage.


Assuntos
Megacariócitos , Trombocitopenia , Proteína rhoB de Ligação ao GTP/metabolismo , Animais , Plaquetas/metabolismo , Megacariócitos/metabolismo , Camundongos , Microtúbulos/metabolismo , Trombocitopenia/genética , Tubulina (Proteína)/metabolismo
10.
Mol Cancer ; 21(1): 112, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538494

RESUMO

BACKGROUND: Although gemcitabine has been considered as the first-line drug for advanced pancreatic cancer (PC), development of resistance to gemcitabine severely limits the effectiveness of this chemotherapy, and the underlying mechanism of gemcitabine resistance remains unclear. Various factors, such as ATP binding cassette (ABC) transporters, microRNAs and their downstream signaling pathways are included in chemoresistance to gemcitabine. This study investigated the potential mechanisms of microRNAs and ABC transporters related signaling pathways for PC resistance to gemcitabine both in vivo and in vitro. METHODS: Immunohistochemistry and Western blotting were applied to detect the expression of ABC transporters. Molecular docking analysis was performed to explore whether gemcitabine interacted with ABC transporters. Gain-of-function and loss-of-function analyses were performed to investigate the functions of hsa-miR-3178 in vitro and in vivo. Bioinformatics analysis, Western blotting and dual-luciferase reporter assay were used to confirm the downstream regulatory mechanisms of hsa-miR-3178. RESULTS: We found that P-gp, BCRP and MRP1 were highly expressed in gemcitabine-resistant PC tissues and cells. Molecular docking analysis revealed that gemcitabine can bind to the ABC transporters. Hsa-miR-3178 was upregulated in gemcitabine resistance PANC-1 cells as compared to its parental PANC-1 cells. Moreover, we found that hsa-miR-3178 promoted gemcitabine resistance in PC cells. These results were also verified by animal experiments. RhoB was down-regulated in gemcitabine-resistant PC cells and it was a downstream target of hsa-miR-3178. Kaplan-Meier survival curve showed that lower RhoB expression was significantly associated with poor overall survival in PC patients. Rescue assays demonstrated that RhoB could reverse hsa-miR-3178-mediated gemcitabine resistance. Interestingly, hsa-miR-3178 promoted gemcitabine resistance in PC by activating the PI3K/Akt pathway-mediated upregulation of ABC transporters. CONCLUSIONS: Our results indicate that hsa-miR-3178 promotes gemcitabine resistance via RhoB/PI3K/Akt signaling pathway-mediated upregulation of ABC transporters. These findings suggest that hsa-miR-3178 could be a novel therapeutic target for overcoming gemcitabine resistance in PC.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Desoxicitidina , MicroRNAs , Neoplasias Pancreáticas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteína rhoB de Ligação ao GTP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína rhoB de Ligação ao GTP/metabolismo , Gencitabina , Neoplasias Pancreáticas
11.
FASEB J ; 36(4): e22254, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35294066

RESUMO

Overwhelming inflammation in the setting of acute critical illness induces capillary leak resulting in hypovolemia, edema, tissue dysoxia, organ failure and even death. The tight junction (TJ)-dependent capillary barrier is regulated by small GTPases, but the specific regulatory molecules most active in this vascular segment under such circumstances are not well described. We set out to identify GTPase regulatory molecules specific to endothelial cells (EC) that form TJs. Transcriptional profiling of confluent monolayers of TJ-forming human dermal microvascular ECs (HDMECs) and adherens junction only forming-human umbilical vein EC (HUVECs) demonstrate ARHGEF12 is basally expressed at higher levels and is only downregulated in HDMECs by junction-disrupting tumor necrosis factor (TNF). HDMECs depleted of ArhGEF12 by siRNA demonstrate a significantly exacerbated TNF-induced decrease in trans-endothelial electrical resistance and disruption of TJ continuous staining. ArhGEF12 is established as a RhoA-GEF in HUVECs and its knock down would be expected to reduce RhoA activity and barrier disruption. Pulldown of active GEFs from HDMECs depleted of ArhGEF12 and treated with TNF show decreased GTP-bound Rap1A after four hours but increased GTP-bound RhoA after 12 h. In cell-free assays, ArhGEF12 immunoprecipitated from HDMECs is able to activate both Rap1A and RhoA, but not act on Rap2A-C, RhoB-C, or even Rap1B which shares 95% sequence identity with Rap1A. We conclude that in TJ-forming HDMECs, ArhGEF12 selectively activates Rap1A to limit capillary barrier disruption in a mechanism independent of cAMP-mediated Epac1 activation.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Proteína rhoA de Ligação ao GTP , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Trifosfato , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Proteínas rap1 de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo
12.
Cell Biol Int ; 46(7): 1074-1088, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35347804

RESUMO

TOX high mobility group box family member 3 (TOX3) can function as tumor suppressor or oncogene in different tumors, while ras homolog family member B (RhoB) is a well-known tumor suppressor. The expression and role of TOX3 in colorectal cancer (CRC) are unknown. This study aimed to investigate the expression of TOX3 in CRC and the role of TOX3/mitogen-activated protein kinase (MAPK)/RhoB signaling in the proliferation and apoptosis of CRC cells. We showed that TOX3 messenger RNA (mRNA) and protein expression levels were significantly upregulated in CRC tissues and cell lines. High TOX3 expression was associated with high T stage, nodal invasion, and advanced tumor stage. Disease-free survival (DFS) was shortened for CRC patients with high expression of TOX3, while overall survival showed no significant difference. TOX3 promoted proliferation, inhibited apoptosis, and decreased the sensitivity to oxaliplatin of CRC cells. In addition, the inhibition of TOX3 led to the upregulation of RhoB, and RhoB overexpression suppressed the proliferation and promoted apoptosis of CRC cells. Moreover, TOX3 overexpression upregulated MAPK signaling, while MAPK signaling inhibitor U0126 induced CRC cell proliferation arrest or apoptosis, and attenuated the inhibition of RhoB in TOX3 overexpression cells. In addition, the overexpression of TOX3 increased tumor volume in nude mice. In conclusion, TOX3 may be an oncogene in CRC and can predict DFS in CRC patients. TOX3/MAPK/RhoB signaling plays an important role in the modulation of proliferation and apoptosis of CRC cells.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Colorretais , Proteínas Quinases Ativadas por Mitógeno , Transativadores/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína rhoB de Ligação ao GTP/genética , Proteína rhoB de Ligação ao GTP/metabolismo
13.
Small GTPases ; 13(1): 196-204, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304710

RESUMO

The Ras homologous (Rho) protein family of GTPases (RhoA, RhoB and RhoC) are the members of the Ras superfamily and regulate cellular processes such as cell migration, proliferation, polarization, adhesion, gene transcription and cytoskeletal structure. Rho GTPases function as molecular switches that cycle between GTP-bound (active state) and GDP-bound (inactive state) forms. Leukaemia-associated RhoGEF (LARG) is a guanine nucleotide exchange factor (GEF) that activates RhoA subfamily GTPases by promoting the exchange of GDP for GTP. LARG is selective for RhoA subfamily GTPases and is an essential regulator of cell migration and invasion. Here, we describe the mechanisms by which LARG is regulated to facilitate the understanding of how LARG mediates functions like cell motility and to provide insight for better therapeutic targeting of these functions.


Assuntos
Leucemia , Proteína rhoA de Ligação ao GTP , Humanos , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Guanosina Trifosfato , Proteínas rho de Ligação ao GTP/metabolismo
14.
Viruses ; 13(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834920

RESUMO

Zika virus (ZIKV) is a re-emerging flavivirus that has caused large-scale epidemics. Infection during pregnancy can lead to neurologic developmental abnormalities in children. There is no approved vaccine or therapy for ZIKV. To uncover cellular pathways required for ZIKV that can be therapeutically targeted, we transcriptionally upregulated all known human coding genes with an engineered CRISPR-Cas9 activation complex in human fibroblasts deficient in interferon (IFN) signaling. We identified Ras homolog family member V (RhoV) and WW domain-containing transcription regulator 1 (WWTR1) as proviral factors, and found them to play important roles during early ZIKV infection in A549 cells. We then focused on RhoV, a Rho GTPase with atypical terminal sequences and membrane association, and validated its proviral effects on ZIKV infection and virion production in SNB-19 cells. We found that RhoV promotes infection of some flaviviruses and acts at the step of viral entry. Furthermore, RhoV proviral effects depend on the complete GTPase cycle. By depleting Rho GTPases and related proteins, we identified RhoB and Pak1 as additional proviral factors. Taken together, these results highlight the positive role of RhoV in ZIKV infection and confirm CRISPR activation as a relevant method to identify novel host-pathogen interactions.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Infecção por Zika virus/enzimologia , Zika virus/fisiologia , Proteína rhoB de Ligação ao GTP/metabolismo , Células A549 , Sistemas CRISPR-Cas , Proteínas de Ligação ao GTP/genética , Humanos , Proteínas de Neoplasias/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Internalização do Vírus , Replicação Viral , Zika virus/genética , Infecção por Zika virus/genética , Infecção por Zika virus/virologia , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Proteína rhoB de Ligação ao GTP/genética
15.
Life Sci Alliance ; 4(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34187934

RESUMO

Epidermal growth factor receptor (EGFR) and human EGFR 2 (HER2) phosphorylation drives HER2-positive breast cancer cell proliferation. Enforced activation of phosphatases for those receptors could be a therapeutic option for HER2-positive breast cancers. Here, we report that degradation of an endosomal small GTPase, RhoB, by the ubiquitin ligase complex cullin-3 (CUL3)/KCTD10 is essential for both EGFR and HER2 phosphorylation in HER2-positive breast cancer cells. Using human protein arrays produced in a wheat cell-free protein synthesis system, RhoB-GTP, and protein tyrosine phosphatase receptor type H (PTPRH) were identified as interacting proteins of connector enhancer of kinase suppressor of Ras1 (CNKSR1). Mechanistically, constitutive degradation of RhoB, which is mediated by the CUL3/KCTD10 E3 complex, enabled CNKSR1 to interact with PTPRH at the plasma membrane resulting in inactivation of EGFR phosphatase activity. Depletion of CUL3 or KCTD10 led to the accumulation of RhoB-GTP at the plasma membrane followed by its interaction with CNKSR1, which released activated PTPRH from CNKSR1. This study suggests a mechanism of PTPRH activation through the exclusive binding of RhoB-GTP to CNKSR1.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Transporte , Linhagem Celular Tumoral , Proteínas Culina/metabolismo , Receptores ErbB/agonistas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pessoa de Meia-Idade , Modelos Biológicos , Fosforilação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Prognóstico , Análise Serial de Proteínas , Ligação Proteica , Proteólise , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo
16.
FASEB J ; 35(6): e21627, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33948992

RESUMO

Capillary endothelial cells (ECs) maintain a semi-permeable barrier between the blood and tissue by forming inter-EC tight junctions (TJs), regulating selective transport of fluid and solutes. Overwhelming inflammation, as occurs in sepsis, disrupts these TJs, leading to leakage of fluid, proteins, and small molecules into the tissues. Mechanistically, disruption of capillary barrier function is mediated by small Rho-GTPases, such as RhoA, -B, and -C, which are activated by guanine nucleotide exchange factors (GEFs) and disrupted by GTPase-activating factors (GAPs). We previously reported that a mutation in a specific RhoB GAP (p190BRhoGAP) underlays a hereditary capillary leak syndrome. Tumor necrosis factor (TNF) treatment disrupts TJs in cultured human microvascular ECs, a model of capillary leak. This response requires new gene transcription and involves increased RhoB activation. However, the specific GEF that activates RhoB in capillary ECs remains unknown. Transcriptional profiling of cultured tight junction-forming human dermal microvascular endothelial cells (HDMECs) revealed that 17 GEFs were significantly induced by TNF. The function of each candidate GEF was assessed by short interfering RNA depletion and trans-endothelial electrical resistance screening. Knockown of ArhGEF10 reduced the TNF-induced loss of barrier which was phenocopied by RhoB or dual ArhGEF10/RhoB knockdown. ArhGEF10 knockdown also reduced the extent of TNF-induced RhoB activation and disruption at tight junctions. In a cell-free assay, immunoisolated ArhGEF10 selectively catalyzed nucleotide exchange to activate RhoB, but not RhoA or RhoC. We conclude ArhGEF10 is a TNF-induced RhoB-selective GEF that mediates TJ disruption and barrier loss in human capillary endothelial cells.


Assuntos
Derme/metabolismo , Endotélio Vascular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Junções Íntimas/fisiologia , Proteína rhoB de Ligação ao GTP/metabolismo , Permeabilidade Capilar , Derme/citologia , Derme/efeitos dos fármacos , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Proteína rhoB de Ligação ao GTP/genética
17.
Nat Commun ; 12(1): 2587, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972537

RESUMO

Host cells use several anti-bacterial pathways to defend against pathogens. Here, using a uropathogenic Escherichia coli (UPEC) infection model, we demonstrate that bacterial infection upregulates RhoB, which subsequently promotes intracellular bacteria clearance by inducing LC3 lipidation and autophagosome formation. RhoB binds with Beclin 1 through its residues at 118 to 140 and the Beclin 1 CCD domain, with RhoB Arg133 being the key binding residue. Binding of RhoB to Beclin 1 enhances the Hsp90-Beclin 1 interaction, preventing Beclin 1 degradation. RhoB also directly interacts with Hsp90, maintaining RhoB levels. UPEC infections increase RhoB, Beclin 1 and LC3 levels in bladder epithelium in vivo, whereas Beclin 1 and LC3 levels as well as UPEC clearance are substantially reduced in RhoB+/- and RhoB-/- mice upon infection. We conclude that when stimulated by UPEC infections, host cells promote UPEC clearance through the RhoB-Beclin 1-HSP90 complex, indicating RhoB may be a useful target when developing UPEC treatment strategies.


Assuntos
Autofagossomos/metabolismo , Proteína Beclina-1/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Infecções Urinárias/metabolismo , Escherichia coli Uropatogênica/crescimento & desenvolvimento , Proteína rhoB de Ligação ao GTP/metabolismo , Animais , Autofagossomos/genética , Autofagossomos/ultraestrutura , Proteína Beclina-1/genética , Linhagem Celular , Epitélio/metabolismo , Epitélio/microbiologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Feminino , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP90/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Estabilidade Proteica , RNA Interferente Pequeno , Proteínas Recombinantes , Bexiga Urinária/metabolismo , Bexiga Urinária/microbiologia , Infecções Urinárias/genética , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/patogenicidade , Proteína rhoB de Ligação ao GTP/genética
18.
Phytother Res ; 35(7): 3732-3746, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33724576

RESUMO

Natural products have been of much interest in research studies owing to their wide pharmacological applications, chemical diversity, low side effects, and multitarget activities. Examples of these compounds include matrine, sulforaphane, silibinin, curcumin, berberin, resveratrol, and quercetin. Some of the present anticancer drugs, such as taxol, vincristine, vinblastine, and doxorubicin are also derived from natural products. The anti-carcinogenic effects of these products are partly mediated through modulation of microRNA-21 (miR-21) expression. To date, numerous downstream targets of miR-21 have been recognized, which include phosphatase and tensin homolog (PTEN), ras homolog gene family member B (RHOB), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), programmed cell death 4 (PDCD4), signal transducer and activator of transcription (STAT)-3, and nuclear factor kappa B (NF-κB) pathways. These signaling pathways, their regulation by oncomiR-21 in cancer, and the modulating impact of natural products are the main focus of this review.


Assuntos
Produtos Biológicos , MicroRNAs , Neoplasias , Proteínas Reguladoras de Apoptose/metabolismo , Produtos Biológicos/farmacologia , Humanos , MicroRNAs/genética , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína rhoB de Ligação ao GTP/metabolismo
19.
STAR Protoc ; 2(1): 100249, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33437969

RESUMO

Here, we provide a protocol for the selection of conformation-specific intracellular antibody degraders using a cell-based screening method. We applied this protocol to select antibody-based degraders targeting the active form of the small GTPase RHOB (i.e., RHOB-GTP) using an engineered H2882 cell line. The protocol can be used to study the function of RHOB active conformation in various cellular settings. This protocol can be broadly applied to select any kind of intracellular antibody degraders, regardless of conformational state. For complete details on the use and execution of this protocol, please refer to Bery et al. (2019).


Assuntos
Engenharia Celular , Proteólise , Anticorpos de Cadeia Única/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Linhagem Celular , Humanos , Conformação Proteica , Anticorpos de Cadeia Única/genética , Proteína rhoB de Ligação ao GTP/genética
20.
J Mol Neurosci ; 71(6): 1221-1233, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33159672

RESUMO

Alzheimer's disease (AD) poses a significant threat to human life and health. The intraneuronal accumulation of ß-amyloid (Aß) plaques in the brains of AD patients results in neuronal cell death, which is a key factor that triggers multiple changes in the pathogenesis of AD. The inhibition of Aß-induced neuronal cell death may potentially help in the intervention and treatment of AD. Our previous study reported that tumor necrosis factor α-induced protein 1 (TNFAIP1) is induced by and promotes Aß25-35-induced neurotoxicity in mouse neuronal cells, but the roles and regulatory mechanisms of TNFAIP1 are still largely unknown. In this study, our experimental results show that TNFAIP1 and p-TNFAIP1 (phosphorylation of TNFAIP1 at Ser280) are overexpressed in the neurons of the cortex and hippocampus in the brains of APP/PS1 mice, and the transcription factor NF-κB is involved in the Aß-induced upregulation of TNFAIP1. Moreover, our results suggest that TNFAIP1 contributes to the Aß-induced reactive oxygen species (ROS) production, decreased mitochondrial membrane potential (∆Ψm), and neuronal cell death in human SH-SY5Y cells. We further revealed that Aß increases the binding of TNFAIP1 to RhoB, and knockdown of RhoB attenuates the TNFAIP1-induced apoptosis of human SH-SY5Y cells. These data suggest that TNFAIP1 is closely associated with AD pathogenesis, and overexpression of TNFAIP1 in the neurons of the brains of AD patients plays a role in apoptosis, at least in part, via RhoB signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Apoptose , Neurônios/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial , Camundongos , NF-kappa B/metabolismo , Presenilina-1/genética , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Proteína rhoB de Ligação ao GTP/genética , Proteína rhoB de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...